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Relativistic Motion with Linear Dissipation
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A general formalism for obtaining the Lagrangian and Hamiltonian for a one-
dimensional dissipative system is developed. The formalism is illustrated by applying it
to the case of a relativistic particle with linear dissipation. The relativistic wave equation
is solved for a free particle with linear dissipation.
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1. INTRODUCTION

It is very well known that for nondissipative systems the Lagrangian and
Hamiltonian can be easily obtained by subtracting or adding respectively the ki-
netic and potential energy of the system (Goldstein, 1980), but when we have
dissipation in our dynamical system this construction is not useful and the corre-
sponding Lagrangian and Hamiltonian is certainly not trivial to obtain (González,
2004; López, 1996). The reason is that there is not yet a consistent Lagrangian and
Hamiltonian formulation for dissipative systems. The problem of obtaining the
Lagrangian and Hamiltonian from the equations of motion of a mechanical system
is a particular case of “the inverse problem of the calculus of variations” (Santilli,
1978; Vujanovic and Jones, 1989). This topic has been studied by many mathe-
maticians and theoretical physicists since the end of the last century. The interest
of physicists in this problem has grown recently because of the quantization of
dissipative systems. A mechanical system can be quantized once its Hamitonian is
known and this Hamiltonian is usually obtained from a Lagrangian. The problem
of quantizing dissipative systems has been extensively studied for nonrelativistic
systems (Chung-In et al., 2002; López and González, 2004) but little has been
done for relativistic systems.
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The main purpose of this paper is to develop a general formalism to ob-
tain Lagrangians and Hamiltonians for one-dimensional dissipative systems and
apply it to the case of a relativistic particle under the action of a dissipative
force which is proportional to its velocity. Once knowing the Hamiltonian of the
system the relativistic wave function is obtained for a free particle with linear
dissipation.

2. LAGRANGIAN AND HAMILTONIAN FOR
DISSIPATIVE SYSTEMS

Newton’s equation of motion for one-dimensional systems can be written as
the following dynamical system

dx

dt
= v,

dv

dt
= F (t, x, v), (1)

where t is time, x is the position of the particle, v is the velocity and F (t, x, v) is
the force divided by the mass of the particle. If a Lagrangian function L(t, x, v)
is given for (1) the Hamiltonian of the system can be obtained by the Legendre
transform

H (t, x, p) = pv(t, x, p) − L(t, x, v), (2)

where v(t, x, p) is the inverse function of the generalized linear momentum given
by

p = ∂L

∂v
(t, x, v).

If the Lagrangian function has no explicit time dependence then the Hamiltonian
of the system is a constant of motion (Goldstein, 1980).

Assuming the following condition over the Hamiltonian

∂2H

∂x ∂v
= ∂2H

∂v ∂x
, (3)

then (3) leads to

v
∂3L

∂x ∂v2
+ F

∂3L

∂v3
+ ∂3L

∂v ∂t ∂v
+ ∂F

∂v

∂2L

∂v2
= 0, (4)

where the Euler–Lagrange equation

d

dt

(
∂L

∂v

)
= ∂L

∂v
, (5)
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has been used. Therefore, in order to obtain the Lagrangian of (1) we have to
find a nontrivial solution for (4) which for the general case is difficult to find
(Vujanovic and Jones, 1989) but it can be less difficult if we consider cases where
the generalized linear momentum p = ∂L/∂v has the following forms:

• p = p(x, v): If the generalized linear momentum is independent of time,
then Eq. (4) turns into

v
∂G

∂x
+ F

∂G

∂v
+ ∂F

∂v
G = 0 (6)

where G = ∂2L/∂v2. The general solution for (6) is given by

∂2L

∂v2
= exp

(∫
∂F

∂v
dt

)
, (7)

and the Lagrangian is obtained through the integration

L(x, v) =
∫

dv

∫
G(x, v) dv + f1(x)v − f2(x), (8)

where f1(x) and f2(x) are arbitrary functions. The second term on the right
side of (8) corresponds to a gauge of the Lagrangian which brings about
an equivalent Lagrangian (Goldstein, 1980), and it is possible to forget it.

• p = p(t, v): If the generalized linear momentum is independent of position,
then Eq. (4) turns into

F
∂3L

∂v3
+ ∂3L

∂v ∂t ∂v
+ ∂F

∂v

∂2L

∂v2
= 0, (9)

which means that

∂

∂v

(
F

∂2L

∂v2
+ ∂2L

∂t ∂v

)
= 0,

the term in parenthesis is dp/dt , therefore if the generalized linear mo-
mentum is independent of position then the Euler–Lagrange equation must
be of the form

dp

dt
= f (t, x), (10)

where f (t, x) is the generalized force and may be any arbitrary function
of position and time. Writing the generalized linear momentum as p =
µ(t)g(v) then Eq. (10) is given by

dµ

dt
g(v) + µ(t)

dg

dv

dv

dt
= f (t, x), (11)
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if we are dealing with a relativistic system with linear dissipation, then

dv

dt
=

(
−∂U (t, x)

∂x
− γ v

) (
1 − v2

c2

)3/2

, (12)

where γ is a positive real parameter, c is the speed of light and U (t, x)
represents the potential energy of the system. Substituting (12) into (11)
we have

dµ

dt
g(v) + µ(t)

dg

dv

(
−∂U (t, x)

∂x
− γ v

) (
1 − v2

c2

)3/2

= f (t, x), (13)

if

dg

dv
= 1

(1 − v2/c2)3/2

then Eq. (13) is given by

v

(
1√

1 − v2/c2

dµ

dt
− γµ(t)

)
− µ(t)

∂U

∂x
= f (t, x), (14)

since Eq. (14) must not depend on the velocity then

1√
1 − v2/c2

dµ

dt
= γµ(t), (15)

the solution for (15) is given by

µ(t) = exp

(
γ

∫ √
1 − v2/c2 dt

)
= eγ τ (t), (16)

where

τ (t) =
∫ √

1 − v2/c2 dt, (17)

is known as the proper time of the particle (Goldstein, 1980). Therefore
Eq. (12) can be expressed as

d

dt

(
veγ τ√

1 − v2/c2

)
= −eγ τ ∂U

∂x
, (18)

and the Lagrangian and Hamiltonian for (18) are given by

L(t, x, v) = −c2eγ τ
√

1 − v2/c2 − eγ τU (t, x), (19)

H (t, x, p) = c2eγ τ
√

1 + p2e−2γ τ /c2 + eγ τU (t, x). (20)
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If v � c then (20) reduces to the so-called Caldirola-Kanai Hamiltonian

H (t, x, p) ≈ p2e−γ t

2
+ eγ tU (t, x) + c2eγ t , (21)

which describes the motion of a nonrelativistic particle with linear dissi-
pation (Chung-In et al., 2002).

3. RELATIVISTIC WAVE EQUATION WITH DISSIPATION

In all the subsequent analysis we will set c = h = 1. Let us now consider the
wave equation for a free relativistic particle subject to a dissipative force which is
proportional to its velocity, the equation of motion of this system is given by

dv

dt
= −γ v(1 − v2)3/2 (22)

and the Hamiltonian for (22) is

H (t, x, p) = eγ τ
√

1 + p2e−2γ τ (23)

making the usual substitution p → −i∂/∂x and H → i∂/∂t and letting Eq. (23)
act on a wave function �(t, x) we obtain the following relativistic wave equation(

∂2

∂t2
− ∂2

∂x2
+ e2γ τ

)
� = 0, (24)

Looking for solutions of the form �(t, x) = f (t)ψ(x) we obtain the following
equations for f (t) and ψ(x)

d2f

dt2
+ (k2 + e2γ τ )f = 0,

d2ψ

dx2
+ k2ψ = 0, (25)

where k2 is the separation constant. Therefore

ψ(x) = e±ikx . (26)

So far, everything is exact, but to obtain the solution for f (t) we have first to specify
τ (t) = ∫ √

1 − v2 dt , which can be done integrating the equation of motion (22),
doing this we get

−γ t = 1 − ξ tanh−1 ξ

ξ
, (27)

where ξ = √
1 − v2. Expanding the term tanh−1 ξ and taking into account only

terms less than or equal to ξ 3, then Eq. (27) turns into

ξ 2 − γ tξ − 1 = 0, (28)
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solving Eq. (28) we have

ξ (t) = γ t

2

⎛
⎝1 ±

√
1 +

(
2

γ t

)2
⎞
⎠ , (29)

we have two solutions for ξ (t), but we can get rid of one knowing that proper time
runs slowly than coordinate time (Goldstein, 1980), therefore we must choose

ξ (t) = γ t

2

⎛
⎝1 −

√
1 +

(
2

γ t

)2
⎞
⎠ . (30)

If 2 < γ t , then

ξ (t) = γ t

2

(
1 − 1 − 1

2

(
2

γ t

)2

− 1

8

(
2

γ t

)4

− · · ·
)

, (31)

therefore

τ (t) =
∫

ξ (t) dt ≈ − ln(t)

γ
, (32)

Equation (32) is valid only for 2/γ < t < 1. Substituting (32) into (25) we have

d2f

dt2
+

(
k2 + 1

t2

)
f = 0, (33)

Equation (33) represents a Bessel equation in its normal form with the following
solution

f (t) = √
t
(
Ji

√
3/2(kt) + Yi

√
3/2(kt)

)
, (34)

where J and Y are Bessel’s functions of the first and second kind, respectively
(Watson, 1966). Therefore, the approximate wave function for a free relativistic
particle under a force which is proportional to its velocity is given by

�(t, x) = √
t eikx

(
Ji

√
3/2(kt) + Yi

√
3/2(kt)

)
, (35)

where 2/γ < t < 1.

4. CONCLUSIONS

A general formalism to obtain the Lagrangian and Hamiltonian for one-
dimensional dissipative systems was obtained. The Lagrangian and Hamiltonian
for a relativistic particle with linear dissipation was deduced, using this Hamil-
tonian the relativistic wave function was obtain for a free particle with linear
dissipation.
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López, G. (1996). Annals of Physics 251, 363–383.
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